
Design and Implementation of Pipelined 32-bit
Advanced RISC Processor for Various D.S.P

Applications
J.Poornima, G.V.Ganesh, M.jyothi,M.Sahithi,A.jhansi RaniB. Raghu Kanth

 Department of ECE, K L University
Vijayawada, INDIA

Abstract— In this paper, we propose 32-bit pipelined
RISC processor using VLIW architectures. This processor
is especially used for both D.S.P applications and general
purpose applications. Reduced instruction is the main
criteria used to develop in this processor. With a single
instruction scheme, more executions can be done using
S.I.M.E. processor consists of the blocks namely
program counter, clock control unit, ALU, IDU and
registers. Advantageous architectural modifications have
been made in the incrementer circuit used in program
counter and carry select adder unit of the ALU in the
RISC CPU core. In this paper, we have extended the utility
of the processor towards convolution and correlation
applications, which are the most important digital signal
processing applications

Keywords—RISC, VLIW, SIME, Convolution,
Correlation.

I. INTRODUCTION

 The trend in the recent past shows the RISC processors
clearly outsmarting the earlier CISC processor
architectures. The reasons have been the advantages,
such as its simple, flexible and fixed instruction format
and hardwired control logic, which paves for higher
clock speed, by eliminating the need for
microprogramming. The combined advantages of high
speed, low power, area efficient and operation-specific
design possibilities have made the RISC processor
ubiquitous.
The main feature of the RISC processor is its ability to
support single cycle operation, meaning that the
instruction is fetched from the instruction memory at the
maximum speed of the memory. RISC processors in
general, are designed to achieve this by pipelining,
where there is a possibility of stalling of clock cycles
due to wrong instruction fetch when jump type
instructions are encountered. This reduces the efficiency
of the processors[1]. This paper describes 32 bit
pipelined RISC processor using VLIW pipelining
architecture. In before the RISC processor is designed
by using super scalar pipelining which has single
execution. By using VLIW architecture we can have
multiple execution in parallel based on a fixed schedule
determined when programs are compiled.
In this instruction life cycle we are introducing a new
methodology called GALS (Global asynchronous Local
Synchronous). This GALS basically consists of a
large number of synchronous modules, which are
synchronized by a clock locally and communicate
asynchronously with other synchronous blocks. As the
global clock net gets divided, the constraints of clock
skew on the synchronous modules get eased. The self-

timed approach is efficient, since it does away with
the need to time-align the operation of all modules
within the framework of a common base clock
period. With this concept, time is reduced and power
consumption is also decreases [2]. Along with that
S.I.M.E scheme is also implemented to achieve high
throughput.
The development of CMOS technology provides very
high density and high performance integrated circuits.
The performance provided by the existing devices has
created a never-ending greed for increasingly better
performing devices. This predicts the use of a whole
RISC processor as a basic device by the year 2020.
However, as the density of IC increases, the power
consumption becomes a major threatening issue along
with the complexity of the circuits.
Hence, it becomes necessary to implement less complex,
low power processor designs.
Here in this RISC processor design we mainly
concentrate on program counter and ALU.Then this
RISC processor is implemented to D.S.P applications
like convolution and correlation.
In order to employ the processor for signal processing
applications, we have integrated a general multiplication
in ALU. We can achieve the high speed, low power and
area efficient operations by reducing the stronger
operations such as multiplication, at the cost of
increasing the weaker operations such as addition.

II. PIPELINED RISC PROCESSOR USING VLIW
RISC, or Reduced Instruction Set Computer. is a type of
microprocessor architecture that utilizes a small, highly-
optimized set of instructions, rather than a more
specialized set of instructions often found in other types
of architectures[3].
A RISC processor pipeline operates in much the same
way, although the stages in the pipeline are different[4]
While different processors have different numbers of
steps, they are basically variations of these five, used in
the MIPS R3000 processor:
 fetch instructions from memory
 read registers and decode the instruction
 execute the instruction or calculate an address
 access an operand in data memory
 write the result into a register
The length of the pipeline is dependent on the length of
the longest step. Because RISC instructions are simpler
than those used in pre-RISC processors (now called
CISC, or Complex Instruction Set Computer), they are
more conducive to pipelining. While CISC instructions
varied in length, RISC instructions are all the same

J.Poornima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3208-3213

3208

length and can be fetched in a single operation. Ideally,
each of the stages in a RISC processor pipeline should
take 1 clock cycle so that the processor finishes an
instruction each clock cycle and averages one cycle per
instruction (CPI)[5],[6].
The RISC pipelining can be done by using various
pipelining techniques. The existing technique is super
scalar pipelining and it has only single execution.
A superscalar CPU architecture implements a form of
parallelism called instruction level parallelism within a
single processor. It therefore allows faster CPU
throughput than would otherwise be possible at a given
clock rate. A superscalar processor executes more than
one instruction during a clock cycle by simultaneously
dispatching multiple instructions to redundant
functional units on the processor. Each functional unit is
not a separate CPU core but an execution resource
within a single CPU such as an arithmetic logic unit, a
bit shifter, or a multiplier. In the Flynn Taxonomy, a
superscalar processor is classified as a MIMD processor
(Multiple Instructions, Multiple Data). While a
superscalar CPU is typically also pipelined, pipelining
and superscalar architecture are considered different
performance enhancement techniques. The superscalar
technique is traditionally associated with several
identifying characteristics (within a given CPU core):
 Instructions are issued from a sequential instruction

stream
 CPU hardware dynamically checks for data

dependencies between instructions at run time
(versus software checking at compile time)

 The CPU accepts multiple instructions per clock
cycle

The simple superscalar pipeline is shown in the figure

Fig 1: simple superscalar pipeline

Superscalar CPU design emphasizes improving the
instruction dispatcher accuracy, and allowing it to keep
the multiple functional units in use at all times. This has
become increasingly important when the number of
units increased. While early superscalar CPUs would
have two ALUs and a single FPU, a modern design such
as the PowerPC 970 includes four ALUs, two FPUs,
and two SIMD units. If the dispatcher is ineffective at
keeping all of these units fed with instructions, the
performance of the system will suffer. A superscalar
processor usually sustains an execution rate in excess of
one instruction per machine cycle. But merely
processing multiple instructions concurrently does not
make an architecture superscalar, since pipelined,

multiprocessor or multi-core architectures also achieve
that, but with different methods.
In a superscalar CPU the dispatcher reads instructions
from memory and decides which ones can be run in
parallel, dispatching them to redundant functional units
contained inside a single CPU. Therefore a superscalar
processor can be envisioned having multiple parallel
pipelines, each of which is processing instructions
simultaneously from a single instruction
thread[7],[8],[9].
The block diagram of the existing RISC processor is
shown in the diagram along with its instruction cycle
with single instruction and single execution

(a)

 (b)
 Fig2: Block diagram of RISC processor

Available performance improvement from superscalar
techniques is limited by three key areas:
 The degree of intrinsic parallelism in the instruction

stream, i.e. limited amount of instruction-level
parallelism.

 The complexity and time cost of the dispatcher and
associated dependency checking logic.

 The branch instruction processing.

Existing binary executable programs have varying
degrees of intrinsic parallelism. In some cases
instructions are not dependent on each other and can be
executed simultaneously. In other cases they are inter-
dependent: one instruction impacts either resources or
results of the other. The instructions a = b + c; d = e + f
can be run in parallel because none of the results depend
on other calculations. However, the instructions a = b +
c; b = e + f might not be runnable in parallel, depending
on the order in which the instructions complete while
they move through the units. When the number of
simultaneously issued instructions increases, the cost of
dependency checking increases extremely rapidly. This
is exacerbated by the need to check dependencies at run
time and at the CPU's clock rate. This cost includes
additional logic gates required to implement the checks,
and time delays through those gates. Research shows the
gate cost in some cases may be nk gates, and the delay
cost k2log n, where n is the number of instructions in the

J.Poornima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3208-3213

3209

processor's instruction set, and k is the number of
simultaneously dispatched instructions. In mathematics,
this is called a combinatoric problem involving
permutations.
Even though the instruction stream may contain no
inter-instruction dependencies, a superscalar CPU must
nonetheless check for that possibility, since there is no
assurance otherwise and failure to detect a dependency
would produce incorrect results. No matter how
advanced the semiconductor process or how fast the
switching speed, this places a practical limit on how
many instructions can be simultaneously dispatched.
While process advances will allow ever greater numbers
of functional units (e.g., ALUs), the burden of checking
instruction dependencies grows so rapidly that the
achievable superscalar dispatch limit is fairly small. --
likely on the order of five to six simultaneously
dispatched instructions.
However even given infinitely fast dependency
checking logic on an otherwise conventional superscalar
CPU, if the instruction stream itself has many
dependencies, this would also limit the possible speedup.
Thus the degree of intrinsic parallelism in the code
stream forms a second limitation.
Collectively, these limits drive investigation into
alternative architectural changes such as Very Long
Instruction Word (VLIW), Explicitly Parallel
Instruction Computing (EPIC), simultaneous
multithreading (SMT), and processors. With VLIW, the
burdensome task of dependency checking by hardware
logic at run time is removed and delegated to the
compiler. Explicitly Parallel Instruction Computing
(EPIC) is like VLIW, with extra cache prefetching
instructions.
Simultaneous multithreading, often abbreviated as SMT,
is a technique for improving the overall efficiency of
superscalar CPUs. SMT permits multiple independent
threads of execution to better utilize the resources
provided by modern processor architectures.
Superscalar processors differ from multi-core processors
in that the redundant functional units are not entire
processors. A single processor is composed of finer-
grained functional units such as the ALU, integer
multiplier, integer shifter, floating point unit, etc. There
may be multiple versions of each functional unit to
enable execution of many instructions in parallel. This
differs from a multi-core processor that concurrently
processes instructions from multiple threads, one thread
per core. It also differs from a pipelined CPU, where the
multiple instructions can concurrently be in various
stages of execution, assembly-line fashion.
The various alternative techniques are not mutually
exclusive—they can be (and frequently are) combined
in a single processor. Thus a multicore CPU is possible
where each core is an independent processor containing
multiple parallel pipelines, each pipeline being
superscalar. Some processors also include vector
capability.
Now coming to our paper the main implementation of
the RISC processor is done by using VLIW architecture
along with S.I.M.E (Single Instruction and Multiple
Execution) instruction cycle

Very long instruction word or VLIW refers to a CPU
architecture designed to take advantage of instruction
level parallelism (ILP). A processor that executes every
instruction one after the other (i.e. a non-pipelined
scalar architecture) may use processor resources
inefficiently, potentially leading to poor performance.
The performance can be improved by executing
different sub-steps of sequential instructions
simultaneously (this is pipelining), or even executing
multiple instructions entirely simultaneously as in
superscalar architectures. Further improvement can be
achieved by executing instructions in an order different
from the order they appear in the program; this is called
out-of-order execution.
The VLIW approach, on the other hand, executes
operations in parallel based on a fixed schedule
determined when programs are compiled. Since
determining the order of execution of operations
(including which operations can execute simultaneously)
is handled by the compiler, the processor does not need
the scheduling hardware that the three techniques
described above require. As a result, VLIW CPUs offer
significant computational power with less hardware
complexity (but greater compiler complexity) than is
associated with most superscalar CPUs [10].
In contrast, one VLIW instruction encodes multiple
operations; specifically, one instruction encodes at least
one operation for each execution unit of the device. For
example, if a VLIW device has five execution units,
then a VLIW instruction for that device would have five
operation fields, each field specifying what operation
should be done on that corresponding execution unit. To
accommodate these operation fields, VLIW instructions
are usually at least 64 bits wide, and on some
architectures are much wider. For example, the
following is an instruction for the SHARC. In one cycle,
it does a floating-point multiply, a floating-point add,
and two auto increment loads. All of this fits into a
single 48-bit instruction.
f12=f0*f4, f8=f8+f12, f0=dm(i0,m3), f4=pm(i8,m9);
Since the earliest days of computer architecture some
CPUs have added several additional arithmetic logic
units (ALUs) to run in parallel. Superscalar CPUs use
hardware to decide which operations can run in parallel.
VLIW CPUs use software (the compiler) to decide
which operations can run in parallel. Because the
complexity of instruction scheduling is pushed off onto
the compiler, the hardware's complexity can be
substantially reduced.
A similar problem occurs when the result of a
parallelizable instruction is used as input for a branch.
Most modern CPUs "guess" which branch will be taken
even before the calculation is complete, so that they can
load up the instructions for the branch, or (in some
architectures) even start to compute them speculatively.
If the CPU guesses wrong, all of these instructions and
their context need to be "flushed" and the correct ones
loaded, which is time-consuming. This has led to
increasingly complex instruction-dispatch logic that
attempts to guess correctly, and the simplicity of the
original RISC designs has been eroded. VLIW lacks this
logic, and therefore lacks its power consumption,
possible design defects and other negative features.

J.Poornima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3208-3213

3210

In a VLIW, the compiler uses heuristics or profile
information to guess the direction of a branch. This
allows it to move and prescheduled operations
speculatively before the branch is taken, favouring the
most likely path it expects through the branch. If the
branch goes the unexpected way, the compiler has
already generated compensatory code to discard
speculative results to preserve program semantics.
The main block diagram of our pipelined risc processor
using VLIW architecture along with single instruction
and multiple execution instruction life cycle is shown in
figure

(a)

(b)

Fig3: pipelined RISC processor using VLIW and
S.I.M.E instruction cycle

The description for the main blocks of 32-bit pipelined
RISC processor is explained as below
In above block diagram; Both P0 and P1 can be acts as
address as well as data ports. All ports are 32 bit,
simultaneously they can be accessible
A. Program counter
It performs the two operations, namely, incrementing
and loading. Depending on the details of the particular
computer, the PC or IP holds either the memory address
of the instruction being executed, or the address of the
next instruction to be executed. the program counter is
incremented automatically after fetching a program
instruction, so that instructions are normally retrieved
sequentially from memory, with certain instructions,
such as branches, jumps and subroutine calls and returns,
interrupting the sequence by placing a new value in the
program counter[11].
The Program Counter (PC) is just one of the many
registers in the hardware of the CPU. It, like each of the
other registers, consists of a bank of binary latches (a
binary latch is also known as a flip-flop), with one flip-
flop per bit in the integer that is to be stored (32 for a
32-bit CPU, for example). In the case of the PC, the
integer represents the address in memory that is to be
fetched next.
B. Arithmetic and Logic unit
The arithmetic and logic unit (ALU) performs
arithmetic and logic operations. It also performs the bit
operations such as rotate and shift by a defined number
of bit positions. Here in this architecture the ALU is
doing multiple operations at a time. In computing, an

arithmetic logic unit (ALU) is a digital circuit that
performs arithmetic and logical operations. The ALU is
a fundamental building block of the central processing
unit of a computer, and even the simplest
microprocessors contain one for purposes such as
maintaining timers. The processors found inside modern
CPUs and graphics processing units (GPUs)
accommodate very powerful and very complex ALUs; a
single component may contain a number of ALUs[12].
In our proposed architecture ALU executes multiple
operations because of VLIW architecture. A simple
example is shown in the figure

Fig4: A simple example arithmetic logic unit (2-bit
ALU) that does AND, OR, XOR, and addition.

C.Instruction cycle
 This instruction cycle is having five main parts. They
are
 Instruction fetch (IF) – get instruction from

memory, increment pc
 Instruction decode (ID) – translate opcode into

control signals and read registers
 Output fetch (OF) – fetches out the output
 Execute (EXE) – perform ALU operations,

compute jump/branch targets
 Write back(WB) – update register file

III. PIPELINED RISC PROCESSOR FOR DSP

APPLICATIONS
Here the proposed pipelined RISC processor is
implemented to DSP applications like convolution and
correlation. Here for convolution and correlation we
used general multiplication
Convolution is an integral concatenation of two signals.
It has many applications in numerous areas of signal
processing. The most popular application is the
determination of the output signal of a linear time-
invariant system by convolving the input signal with the
impulse response of the system.
Note that convolving two signals is equivalent to
multiplying the Fourier transform of the two signals.
The linear convolution of two continuous time signals

and is defined by

J.Poornima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3208-3213

3211

For discrete time signals and , the
integration is replaced by a summation

In signal processing, cross-correlation is a measure of
similarity of two waveforms as a function of a time-lag
applied to one of them[13]. This is also known as a
sliding dot product or sliding inner-product. It is
commonly used for searching a long-duration signal for
a shorter, known feature. It also has applications in
pattern recognition, single particle analysis, electron
tomographic averaging, cryptanalysis, and
neurophysiology.
The population correlation coefficient ρX,Y between two
random variables X and Y with expected values μX and
μY and standard deviations σX and σY is defined as:

where E is the expected value operator, cov means
covariance, and, corr a widely used alternative notation
for Pearson's correlation.
For continuous functions, f and g, the cross-correlation
is defined as:

where f * denotes the complex conjugate of f.

Similarly, for discrete functions, the cross-correlation is
defined as:

IV. SIMULATION RESULTS
The RISC processor described above is designed using
VHDL and is simulated. The simulation results show
that the processor is capable of implementing the given
instructions and gives multiple executions, thereby
satisfying the basic requirements of the RISC processor.

 Fig5: simulation results showing Swapping

 Fig6: simulation results showing increment

 Fig7: Simulation results of convolution

Fig8: Simulation results of correlation

Here Fig 5 shows the simulation results of swapping of
bits .Mainly this operation is done in ALU.The main
operations of the risc processor are done in ALU
Here Fig 6 shows the simulation results of increment. It
is one of the main operation of ALU.There are so many
operations can be done in ALU but here we mainly
concentrated on swapping and increment.
Here Fig 7 and 8 shows the simulation results of DSP
applications like convolution and correlation. Here for
convolution we used general multiplication.

V. CONCLUSION
 The design of a 32-Bit pipelined RISC processor for
its application towards convolution and correlation
application has been presented. Here we are having
multiple executions with single instructions because of
VLIW architecture. Furthermore this design can be
applicable to various general and DSP applications.

J.Poornima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3208-3213

3212

REFERENCES
[1] Reduced instruction set computer." Whatis?com: 9 Aug 2000,
http://whatis.techtarget.com/WhatIs_Definition_Page/0,4152,214266,
00.html
[2] The Future of Formal Methodsand GALS Design by Kenneth S.
Stevens Daniel Gebhardt Junbok You Yang XuVikas Vij Shomit Das
Krishnaji Desai in Electrical and Computer Engineering atUniversity
of Utah,Salt Lake City, U.S.A
[3] "Introduction to RISC." http://www.inf.fh-
dortmund.de/person/prof/si/risc/intro_to_risc/irt0_index.html
[4] Introduction to risc processor by ni logic pvt.ltd.,pune
[5] The Pipelined RiSC-16 ENEE 446: Digital Computer Design,
Fall 2000 by Prof. Bruce Jacob
[6] Wayne, Peter. "Processor Pipelines." Byte, 17 (1992): 305
[7] Zhou & Martonosi. “Augmenting Modern Suuperscalar
Architectures with ConfigurableExtended Instructions”.19 April 2004.

[8] Sorin Cotofana, Stamatis Vassiliadis, "On the Design
Complexity of the Issue Logic of Superscalar Machines",
EUROMICRO 1998: 10277-10284
[9] Steven McGeady, "The i960CA SuperScalar Implementation of
the 80960 Architecture", IEEE 1990, pp. 232–240
[10] Fisher, Joseph A. (1983). "Very Long Instruction Word
architectures and the ELI-512" (PDF). Proceedings of the 10th annual
international symposium on Computer architecture. International
Symposium on Computer Architecture. New York, NY, USA: ACM
pp. 140–150. doi:10.1145/800046.801649. ISBN 0-89791-101-6
Retrieved 2009-04-27.
[11] F.B. Chambers, D.A. Duce and G.P. Jones (1984), Distributed
Computing, Academic Press, Orlando, USA, ISBN 0-12-167350-2.
[12] Hwang, Enoch (2006). Digital Logic and Microprocessor
Design with VHDL. Thomson. ISBN 0-534-46593-5.
[13] Keshab K.Parhi, VLSI Digital Signal Processing Systems,
Wiley India Edition,1999.

J.Poornima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012,3208-3213

3213

